博客
关于我
LR模型详解
阅读量:555 次
发布时间:2019-03-09

本文共 849 字,大约阅读时间需要 2 分钟。

逻辑回归是一种经典的二分类模型,旨在通过构建一个线性决策边界来对数据进行分类。以下是对逻辑回归的系统理解:

  • 基本概念

    逻辑回归基于Gaussians对数据进行建模,假设数据服从伯努利分布。其目标是通过极大化似然函数来确定参数w和b,使得模型能够准确地将数据划分为二类:正类和负类。关键的工具是对数几率函数(Sigmoid函数),它将线性输入映射为目标概率,输出为样本为正类的可能性。

  • 工作原理

    逻辑回归模型通过对数似然函数进行优化来确定参数。最大化似然函数等价于最小化交叉熵损失,这通过梯度下降等优化方法进行求解。模型输出的是对数概率,用于分类任务中。

  • 参数估计

    通过极大似然估计,逻辑回归模型对参数w和b进行优化,最大化对数似然函数。在实践中,常用梯度下降法或牛顿法等优化算法来实现。

  • 损失函数

    交叉熵损失函数是逻辑回归的重要损失函数,它度量数据分布的差异性,常用于多分类任务。对数似然损失则用于二分类,其形式为-n*log(1 + exp(-y wx + b))。其中y是类别标签,wx + b是预测值。

  • 正则化方法

    L1正则化(LASSO回归)通过加入绝对值罚项,鼓励模型参数稀疏。L2正则化(Ridge回归)通过平方项使参数趋向于较小的值,有助于防止过拟合。

  • 欠拟合与过拟合

    过拟合可通过减少特征数量、特征选择或正则化来解决。欠拟合通常需要更多的数据或特征。

  • 最大熵模型

    逻辑回归与最大熵模型是等价的。最大熵模型问题可以通过约束优化转换为最速解,这展示了它们在统计上的一致性。

  • 优缺点分析

    • 优点:直接建模分类可能性,计算效率高,适合大数据处理。
    • 缺点:容易欠拟合,特征缺失或维度过大可能导致效果不佳。
  • 应用与扩展

    逻辑回归可扩展到多分类任务,通过对特征进行变换或扩展算法(如FM算法)应对非线性问题。其稀疏性来源于特征离散化和模型本身的表达限制。

  • 逻辑回归为分类任务提供了一个简单但有效的解决方案,理解其局限性对模型选择至关重要。在实际应用中,特征工程和正则化方法是提升模型性能的有效策略。

    转载地址:http://akbpz.baihongyu.com/

    你可能感兴趣的文章
    NIFI1.21.0_NIFI和hadoop蹦了_200G集群磁盘又满了_Jps看不到进程了_Unable to write in /tmp. Aborting----大数据之Nifi工作笔记0052
    查看>>
    NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增删改数据分发及删除数据实时同步_通过分页解决变更记录过大问题_02----大数据之Nifi工作笔记0054
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
    查看>>
    NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
    查看>>
    Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
    查看>>
    NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
    查看>>
    NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
    查看>>
    NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
    查看>>
    NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
    查看>>
    NIFI集群_内存溢出_CPU占用100%修复_GC overhead limit exceeded_NIFI: out of memory error ---大数据之Nifi工作笔记0017
    查看>>
    NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
    查看>>
    NIH发布包含10600张CT图像数据库 为AI算法测试铺路
    查看>>
    Nim教程【十二】
    查看>>
    Nim游戏
    查看>>
    NIO ByteBuffer实现原理
    查看>>
    Nio ByteBuffer组件读写指针切换原理与常用方法
    查看>>
    NIO Selector实现原理
    查看>>
    nio 中channel和buffer的基本使用
    查看>>
    NIO基于UDP协议的网络编程
    查看>>