博客
关于我
LR模型详解
阅读量:555 次
发布时间:2019-03-09

本文共 849 字,大约阅读时间需要 2 分钟。

逻辑回归是一种经典的二分类模型,旨在通过构建一个线性决策边界来对数据进行分类。以下是对逻辑回归的系统理解:

  • 基本概念

    逻辑回归基于Gaussians对数据进行建模,假设数据服从伯努利分布。其目标是通过极大化似然函数来确定参数w和b,使得模型能够准确地将数据划分为二类:正类和负类。关键的工具是对数几率函数(Sigmoid函数),它将线性输入映射为目标概率,输出为样本为正类的可能性。

  • 工作原理

    逻辑回归模型通过对数似然函数进行优化来确定参数。最大化似然函数等价于最小化交叉熵损失,这通过梯度下降等优化方法进行求解。模型输出的是对数概率,用于分类任务中。

  • 参数估计

    通过极大似然估计,逻辑回归模型对参数w和b进行优化,最大化对数似然函数。在实践中,常用梯度下降法或牛顿法等优化算法来实现。

  • 损失函数

    交叉熵损失函数是逻辑回归的重要损失函数,它度量数据分布的差异性,常用于多分类任务。对数似然损失则用于二分类,其形式为-n*log(1 + exp(-y wx + b))。其中y是类别标签,wx + b是预测值。

  • 正则化方法

    L1正则化(LASSO回归)通过加入绝对值罚项,鼓励模型参数稀疏。L2正则化(Ridge回归)通过平方项使参数趋向于较小的值,有助于防止过拟合。

  • 欠拟合与过拟合

    过拟合可通过减少特征数量、特征选择或正则化来解决。欠拟合通常需要更多的数据或特征。

  • 最大熵模型

    逻辑回归与最大熵模型是等价的。最大熵模型问题可以通过约束优化转换为最速解,这展示了它们在统计上的一致性。

  • 优缺点分析

    • 优点:直接建模分类可能性,计算效率高,适合大数据处理。
    • 缺点:容易欠拟合,特征缺失或维度过大可能导致效果不佳。
  • 应用与扩展

    逻辑回归可扩展到多分类任务,通过对特征进行变换或扩展算法(如FM算法)应对非线性问题。其稀疏性来源于特征离散化和模型本身的表达限制。

  • 逻辑回归为分类任务提供了一个简单但有效的解决方案,理解其局限性对模型选择至关重要。在实际应用中,特征工程和正则化方法是提升模型性能的有效策略。

    转载地址:http://akbpz.baihongyu.com/

    你可能感兴趣的文章
    Nokia5233手机和我装的几个symbian V5手机软件
    查看>>
    Non-final field ‘code‘ in enum StateEnum‘
    查看>>
    none 和 host 网络的适用场景 - 每天5分钟玩转 Docker 容器技术(31)
    查看>>
    None还可以是函数定义可选参数的一个默认值,设置成默认值时实参在调用该函数时可以不输入与None绑定的元素...
    查看>>
    NoNodeAvailableException None of the configured nodes are available异常
    查看>>
    Vue.js 学习总结(16)—— 为什么 :deep、/deep/、>>> 样式能穿透到子组件
    查看>>
    NOPI读取Excel
    查看>>
    NoSQL&MongoDB
    查看>>
    NoSQL介绍
    查看>>
    NoSQL数据库概述
    查看>>
    Notadd —— 基于 nest.js 的微服务开发框架
    查看>>
    Notepad ++ 安装与配置教程(非常详细)从零基础入门到精通,看完这一篇就够了
    查看>>
    Notepad++在线和离线安装JSON格式化插件
    查看>>
    notepad++最详情汇总
    查看>>
    notepad如何自动对齐_notepad++怎么自动排版
    查看>>
    Notes on Paul Irish's "Things I learned from the jQuery source" casts
    查看>>
    Notification 使用详解(很全
    查看>>
    NotImplementedError: Cannot copy out of meta tensor; no data! Please use torch.nn.Module.to_empty()
    查看>>
    Now trying to drop the old temporary tablespace, the session hangs.
    查看>>
    nowcoder—Beauty of Trees
    查看>>